Curriculum Vitae

Dr. Fabrice BARBE
Associate Professor at INSA Rouen Normandie, France
Groupe de Physique des Matériaux, UMR CNRS 6634

STUDIES

• 2013 : Habilitation to Supervise Research, HSR Thesis of Université Rouen Normandie
“Conséquences mécaniques des transformations de phase et plasticité cristalline”
• 2002 : Associate Professor at INSA Rouen Normandie, Engineering Mechanics Department
• 2001-02 : Post-doctoral fellow at Université Rennes 1, GMCM, UMR CNRS 6626
Milieux granulaires secs non-cohésifs monodisperses en cisaillement et compaction
• 2000 : PhD of Mines Paristech, Centre des Matériaux P. M. Fourt, UMR CNRS 7633
Supervision : G. Cailletaud et S. Forest.
“Etude numérique de la plasticité d’agrégats polycristallins”
• 1996 : MSc "Solides, Structures et Systèmes Mécaniques", Université P. M. Curie, Paris 6
Supervision : P. Pilvin.
“Modélisation du comportement du Zr − α par une approche polycristalline : simulations, essais”
• 1994-95 : Bachelor and Master degree in Mechanics, Ecole Normale Supérieure de Cachan/UPMC Paris 6


PEDAGOGICAL , ADMINISTRATIVE AND SCIENTIFIC RESPONSABILITIES

• 2020-now: Coordinator of the Mechanics of Materials MSc program at INSA Rouen Normandie
• 2014-2017: Head of the Engineering Mechanics Department of INSA Rouen Normandie (75 MSc diploma each year)
• 2017-2019: Head of the Mechanics of Materials research team (5 faculties, 6-12 PhD students and post-doctoral fellows) in the laboratory Groupe de Physique des Matériaux (∼ 120 members)
• In charge of 6 courses: 5 in MSc and 1 in BSc
• 2003-now: Co-supervision of 12 PhD students (2 under progress)
• Elected member of the Scientific Council (2006-10) and Studies Council (2011-14) of INSA Rouen
• 2003-now: Coordinator of different scientific projects: high performance computing at CINES and CRIHAN, Exploratory project of CNRS, mixed European-regional project (320 kEUR), regional project (300 kEUR)

SCIENTIFIC COMMUNICATIONS

• Peer-reviewed articles in international journals and books : 40
• International congress: 60 ; National Congress: 20 ; Invited conferences and seminars: 10


Publications

Journal articles

[1] Y. Carpier, A. Alia, B. Vieille, and F. Barbe. Experiments based analysis of
thermal decomposition kinetics model. Case of carbon fibers PolyPhenylene
Sulfide composites. Polymer Degradation and Stability, 186:109525, 2021.
doi.org/10.1016/j.polymdegradstab.2021.109525.

[2] Can-Ngon Nguyen, G. Cailletaud, F. Barbe, B. Marini, Duy-Duan Nguyen,
and Huy-Thien Phan. Identification of crystal plasticity parameters for a
non-irradiated and irradiated A508 bainite steel. Metallurgical Research &
Technology, 118:204, 2021. doi.org/10.1051/metal/2021006.

[3] F. Barbe, I. Benedetti, V. Gulizzi, M. Calvat, and C. Keller. Elucidat-
ing the effect of bimodal grain size distribution on plasticity and frac-
ture behavior of polycrystalline materials. Journal of Multiscale Modelling,
11(4):2050007, 2020. doi.org/10.1142/S1756973720500079.

[4] B. Vieille, C. Keller, M. Mokhtari, H. Briatta, T. Breteau, J. Ngue-
jio, F. Barbe, M. Ben Azzouna, and E. Baustert. Investigations on the
fracture behavior of Inconel 718 superalloys obtained from cast and ad-
ditive manufacturing processes. Mater Sci Engng A, 790:139666, 2020.
doi.org/10.1016/j.msea.2020.139666.

[5] Y. Carpier, B. Vieille, A. Coppalle, and F. Barbe. Study of thermomechan-
ical coupling in carbon fibres woven-ply reinforced thermoplastic laminates:
tensile behaviour under radiant heat flux. Polymer Composites, 41(9):3552–
3563, 2020. doi.org/10.1002/pc.25641.

[6] B. Vieille, Y. Carpier, A. Coppalle, and F. Barbe. About the tensile me-
chanical behaviour of carbon fibres fabrics reinforced thermoplastic com-
posites under very high temperature conditions. Composites Part B: En-
gineering, 181:107586, 2020. doi.org/10.1016/j.compositesb.2019.107586.

[7] H. Ramezani Dana, F. Barbe, L. Delbreilh, A. Guillet, M. Ben Azzouna,
and T. Breteau. Polymer additive manufacturing of ABS Structure: influ-
ence of the deposition path on the tensile properties. Journal of Manufac-
turing Processes, 44:288–298, 2019. doi.org/10.1016/j.jmapro.2019.06.015.

[8] B. Flipon, C. Keller, R. Quey, and F. Barbe. A full-field crystal-plasticity
analysis of bimodal polycrystals. Int J Solids Struct, 184:178–192, 2020.
doi.org/10.1016/j.ijsolstr.2019.02.005.

[9] B. Flipon, C. Keller, L. Garcia de la Cruz, E. Hug, and F. Barbe. Tensile
properties of spark plasma sintered AISI 316L stainless steel with unimodal
and bimodal grain size distributions. Mater Sci Engng A, 729:248–256,
2018. doi.org/10.1016/j.msea.2018.05.064.

[10] Y. Carpier, B. Vieille, M.A. Maaroufi, A. Coppalle, and F. Barbe. Mechan-
ical behavior of carbon fibers polyphenylene sulfide composites exposed to
radiant heat flux and constant compressive force. Composite Structures,
200:1–11, 2018. doi.org/10.1016/j.compstruct.2018.05.086.

[11] M.A. Maaroufi, B. Vieille, L. Gilles, Y. Carpier, A. Coppalle, and F. Barbe.
Post-fire compressive behaviour of carbon fibers woven-ply Polyphenylene
Sulfide laminates for aeronautical applications. Composites Part B: Engi-
neering, 119:101–113, 2017. doi.org/10.1016/j.compositesb.2017.03.046.

[12] B. Vieille, A. Coppalle, Y. Carpier, M.A. Maaroufi, and F. Barbe.
Influence of the matrix chemical nature on the post-fire mechani-
cal behavior of notched polymer-based composite structures for high
temperature applications.
Composites Part B, 100:114–124, 2016.
doi.org/10.1016/j.compositesb.2016.06.059.

[13] A. Maitre, D. Ledue, F. Barbe, and L. Lechevallier. Temperature depen-
dence of the exchange bias properties of ferromagnetic/antiferromagnetic
polycrystalline bilayers. J Magnetism Magnetic Mater, 372:134–140, 2014.
doi.org/10.1016/j.jmmm.2014.07.021.

[14] I. Benedetti and F. Barbe. Modelling Polycrystalline Materials: An
Overview of Three-Dimensional Grain-Scale Mechanical Models. Journal of
Multiscale Modelling, 5:1–51, 2013. doi.org/10.1142/S1756973713500029.

[15] A. Jadawi, J.M. Saiter, F. Barbe, and M. Negahban. Porous biodegradable
starch based polymer: effects of plasticizers on the physical properties.
Macromol. Symp., 340:65–72, 2014. doi.org/10.1002/masy.201300134.

[16] A. Maitre, D. Ledue, F. Barbe, and R. Patte. Temperature effect in
polycrystalline exchange-biased bilayers: A Monte Carlo study. JAP,
111:07D105, 2012. doi.org/10.1063/1.3672066.

[17] A. Tahimi, F. Barbe, L. Taleb, and S. Meftah. Experiment-based analyses
of martensitic transformation plasticity predictions from different models
in cases of pre-hardening and gradually varying loads. Comput Mater Sci,
64:25–29, 2012. doi.org/10.1016/j.commatsci.2012.04.019.

[18] C.N. N’Guyen, F. Barbe, N. Osipov, G. Cailletaud, B. Marini, and C. Petry.
Micromechanical local approach to brittle failure in bainite high resolution

polycrystals: A short presentation. Comput Mater Sci, 64:62–65, 2012.
doi.org/10.1016/j.commatsci.2012.03.034.

[19] F. Barbe and R. Quey. A numerical modelling of 3D polycrystal-to-
polycrystal diffusive phase transformations involving crystal plasticity. Int
J Plasticity, 27:823–840, 2011. doi.org/10.1016/j.ijplas.2010.09.008.

[20] R. Quey, P.R. Dawson, and F. Barbe.
Large-scale 3-D random
polycrystals for the finite element method: Generation, meshing and
remeshing.
Comput Meth Appl Mech Engng, 200:1729–1745, 2011.
doi.org/10.1016/j.cma.2011.01.002.

[21] A. Tahimi, F. Barbe, L. Taleb, R. Quey, and A. Guillet.
Eval-
uation of microstructure-based transformation plasticity models from
experiments on 100C6 steel.
Comput Mater Sci, 52:55–60, 2012.
doi.org/10.1016/j.commatsci.2011.01.052.

[22] F. Barbe, R. Quey, A. Musienko, and G. Cailletaud.
Three-
dimensional characterization of strain localization bands in high reso-
lution elastoplastic polycrystals. Mech Res Comm, 36:762–768, 2009.
doi.org/10.1016/j.mechrescom.2009.06.002.

[23] R. Quey, F. Barbe, H. Hoang, and L. Taleb. Effect of the random spatial
distribution of nuclei on the transformation plasticity in a diffusively trans-
forming steel. Int J Microstructure Materials Property, 5:354–364, 2010.
doi.org/10.1504/IJMMP.2010.037612.

[24] F. Barbe, R. Quey, L. Taleb, and E. Souza de Cursi. Numerical modelling
of the plasticity induced during diffusive transformation. An ensemble av-
eraging approach for the case of random arrays of nuclei. Eur J Mech,
A/Solids, 27:1121–1139, 2008. doi.org/10.1016/j.euromechsol.2008.01.005.

[25] F. Barbe, R. Quey, L. Taleb, and E. Souza de Cursi. Numerical modelling
of the plasticity induced during diffusive transformation. An ensemble av-
eraging approach for the case of random arrays of nuclei. Eur J Mech,
A/Solids, 27:1121–1139, 2008. doi.org/10.1016/j.euromechsol.2008.01.005.

[26] H. Hoang, F. Barbe, R. Quey, and L. Taleb. FE determination of the
plasticity induced during diffusive transformation in the case of nucleation
at random locations and instants. Comput Mater Sci, 43:101–107, 2008.
doi.org/10.1016/j.commatsci.2007.07.032.

[27] F. Barbe, R. Quey, and L. Taleb.
Numerical modelling of the
plasticity induced during diffusive transformation. Case of a cu-
bic array of nuclei.
Eur J Mech, A/Solids, 26:611–625, 2007.
doi.org/10.1016/j.euromechsol.2006.09.005.

[28] S. Meftah, F. Barbe, L. Taleb, and F. Sidoroff. Parametric Numeri-
cal Simulations of TRIP and its Interaction with Classical Plasticity in

Martensitic Transformation. Eur J Mech, A/Solids, 26(4):688–700, 2007.
doi.org/10.1016/j.euromechsol.2006.10.004.

[29] P. Richard, P. Philippe, F. Barbe, S. Bourlès, X. Thibault, and D. Bideau.
Analysis by X-ray microtomography of a granular packing undergoing
compaction. Phys Rev E, 68(020301(R)), 2003. arxiv.org/abs/cond-
mat/0308367.

[30] F. Barbe, L. Decker, D. Jeulin, and G. Cailletaud. Intergranular and in-
tragranular behavior of polycrystalline aggregates. Part 1: F.E. model. Int
J Plasticity, 17:513–536, 2001. doi.org/10.1016/S0749-6419(00)00061-9.

[31] F. Barbe, S. Forest, and G. Cailletaud. Intergranular and intragranular
behavior of polycrystalline aggregates. Part 2: results. Int J Plasticity,
17:537–563, 2001. doi.org/10.1016/S0749-6419(00)00062-0.

[32] F. Barbe, R. Parisot, S. Forest, and G. Cailletaud.
Calibrating
a homogenization polycrystal model from large scale FE computa-
tions of polycrystalline aggregates. J Phys IV, 11:Pr5–277–284, 2001.
doi.org/10.1051/jp4:2001534.

[33] F. Barbe, S. Quilici, S. Forest, and G. Cailletaud. Numerical study
of crystalline plasticity: measurements of the heterogeneities due to
grain boundaries under small strains.
La Revue de Métallurgie-
CIT/Science et Génie des Matériaux, september 2003:815–823, 2003.
doi.org/10.1051/metal:2003207.

[34] S. Forest, F. Barbe, and G. Cailletaud. Cosserat modelling of size
effects in crystals.
Int J Solids Struct, 37(46-47):7105–7126, 2000.
doi.org/10.1016/S0020-7683(99)00330-3.

Chapters of books

[35] B. Flipon, L. Milhem, C. Keller, R. Quey, and F. Barbe. Modelling of
polycrystals using well-controlled Voronoi-type tessellations and its appli-
cations to micromechanical analyses, chapter 23, pages 187–198. Presse
des Mines, 2018. F. Willot and S. Forest (Eds), Physics and Mechanics of
Random Media: from Morphology to Material Properties, hal-normandie-
univ.archives-ouvertes.fr/hal-01916848/document.


[36] C. Margueray, L. Vollard, T. Breteau, and F. Barbe.
Fabri-
cation additive métallique : technologies et opportunités.
Nor-
mandie AeroEspace publishing, Feb 2015.
http://www.nae.fr/wp-
content/uploads/2015/06/FabAdditiveMetallique TechnoOpportunites-
NAE.pdf.

[37] P. Cordier, F. Barbe, J. Durinck, A. Tommasi, and A. Walker. Plastic De-
formation of mantle minerals: Multiscale numerical modelling, volume 7,
chapter 16, pages 389–415. 2005. 7th EMU School of Mineralogy: Min-
eral behaviour at extreme conditions, Heidelberg, Germany, June 2005,
doi.org/10.1180/emu-notes.7.16.

[38] F. Barbe, S. Forest, and G. Cailletaud. Polycrystalline plasticity under
small strains. Toward finer descriptions of microstructures. In E. Bouchaud
et al, editor, NATO Proceedings, Physical Aspects of Fracture, pages 191–
206. Kluwer Academic Publishers, 2001. doi.org/10.1007/978-94-010-0656-
9 15.

[39] R. Manno, J. Nguejio, F. Barbe, and I. Benedetti. An investigation into
the fracture behavior of honeycombs with density gradients. Interna-
tional Conference on Fracture and Damage Mechanics Mallorca, Spain.
14-17th September, 2020, 2020. AIP Conference Proceedings 2309, 020015,
doi.org/10.1063/5.0033972.

[40] B. Flipon, L. Garcia de la Cruz, E. Hug, C. Keller, and F. Barbe. Elab-
oration of austenitic stainless steel with bimodal grain size distribution
and investigation of their mechanical behavior. 20th Int. ESAFORM Conf.
on Material Forming, 26-28 April 2017, Dublin, Ireland, AIP Conference
Proceedings 1896, 200007, 2017. doi.org/10.1063/1.5008244.

[41] M. Calvat, B. Flipon, C. Keller, and F. Barbe. Accounting for size depen-
dence on the meso- or on the micro-scale in polycrystalline plasticity. A
comparative study for different grain size distributions, volume 98, chap-
ter 28, pages 339–347. Springer, Cham, 2021. Satya N. Atluri and Igor
Vušanović (Eds.), Computational and Experimental Simulations in Engi-
neering. ICCES21. Mechanisms and Machine Science. doi.org/10.1007/978-
3-030-67090-0 28.


Enseignements

My teachings are integrated in the following formations of INSA Rouen Normandie (French public Engineering School):

  • Engineering Mechanics (Mech)
  • Industrial Engineering (Indus)
  • MSc "system design" (MSD)

I am in charge of the following courses:

  • BSc Mech: Computational approach of structure mechanics (Finite elements analyses based on a software package)
  • MSc 1 Mech+MSD: Numerical methods for engineers (Finite differences, Finite elements, Non linear problems)
  • MSc 1 Mech+MSD: Variational methods (Variational formulation, functional analysis and results, Sobolev spaces)
  • MSc 1 Indus: Computational mechanics of structures (generalized software based approach of the design of systems)
  • MSc 2 Mech+MSD: Microstructure based mechanics of materials (Mean-field / full-field modelling, polycrystal plasticity)
  • MSc 2 Mech: Additive manufacturing (Process-microstructure-properties relationships)
  • MSc 2 Indus: Additive Manufacturing (A transverse project dedicated to light-weight materials with cellular architecture: design, simulation, manufacturing, mechanical testing)

Collective responsabilities for teaching:

  • Head of the Engineering Mechanics Department from 2014 to 2017 (in charge of three formations, 240 students and apprentices at BSc and MSc levels, 80 MSc graduates per year)
  • Founder of the Polymer Additive Manufacturing platform of the Mechanics Department of INSA Rouen
  • Coordinator of the Mechanics of Materials MSc program at INSA Rouen